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ANTI-POWER j-FIXES OF THE THUE-MORSE WORD
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Abstract. Recently, Fici, Restivo, Silva, and Zamboni introduced the notion of
a k-anti-power, which is defined as a word of the form w(1)w(2) · · ·w(k), where
w(1), w(2), . . . , w(k) are distinct words of the same length. For an infinite word
w and a positive integer k, define APj(w, k) to be the set of all integers m such
that wj+1wj+2 · · ·wj+km is a k-anti-power, where wi denotes the i-th letter of
w. Define also Fj(k) = (2Z+ − 1) ∩ APj(t, k), where t denotes the Thue-Morse
word. For all k ∈ Z

+, γj(k) = min(APj(t, k)) is a well-defined positive integer,
and for k ∈ Z

+ sufficiently large, Γj(k) = sup((2Z+ − 1) \ Fj(k)) is a well-defined
odd positive integer. In his 2018 paper, Defant shows that γ0(k) and Γ0(k) grow
linearly in k. We generalize Defant’s methods to prove that γj(k) and Γj(k) grow
linearly in k for any nonnegative integer j. In particular, we show that 1/10 ≤
lim inf
k→∞

(γj(k)/k) ≤ 9/10 and 1/5 ≤ lim sup
k→∞

(γj(k)/k) ≤ 3/2. Additionally, we show

that lim inf
k→∞

(Γj(k)/k) = 3/2 and lim sup
k→∞

(Γj(k)/k) = 3.

1. Introduction

A finite word is called a k-power if it is of the form wk for some word w. A
particularly famous consequence of the study of k-powers is Axel Thue’s 1912 paper
[14], which introduces an infinite binary word that does not contain any 3-powers
as subwords. This word has since caught the interest of numerous academicians
[1, 2, 4, 6–9, 11–13] spanning the fields of combinatorics, analytic number theory [1],
game theory [7], and economics [13]. It is now known as the Thue-Morse word.

Definition 1.1. Let A0 = 0. For each nonnegative integer n, let Bn = An be the
Boolean complement of An, and let An+1 = AnBn. The Thue-Morse word t is defined
as

t = lim
n→∞

An = 0110100110010110 · · · .
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As a natural adaptation of the Ramsey-type notion of a k-power, Fici, Restivo,
Silva, and Zamboni [10] introduce the anti-Ramsey-type notion of a k-anti-power. A
k-anti-power is a word w of the form w = w(1)w(2) · · ·w(k), where w(1), w(2), . . . , w(k)

are distinct words of the same length. For example, 110100 is a 3-anti-power, while
101011 is not. Since the introduction of this notion in 2016, k-anti-powers have
received much attention [3, 5, 8, 12].

As their main result, Fici et al. show that every infinite word contains powers of
any order or anti-powers of any order. In doing so, they define the following set,
which corresponds to an infinite word w and a positive integer k:

AP (w, k) = {m ∈ Z
+ | w1w2 · · ·wkm is a k-anti-power}.

Here, wi indicates the i-th letter of the infinite word w. Such subwords (i.e. those
starting from the first index of w) are called prefixes of w. In [8], Defant introduces
the generalized definition

APj(w, k) = {m ∈ Z
+ | wj+1wj+2 · · ·wj+km is a k-anti-power},

himself studying AP0(t, k) = AP (t, k). Subwords beginning at the (j+1)-st index of
a word w will be referred to as j-fixes of w. An easy consequence of [10, Theorem 6]
is that APj(t, k) is nonempty for any nonnegative integer j and all positive integers
k. We can therefore make the following definition:

Definition 1.2. Let γj(k) = min(APj(t, k)).

For j = 0, it is the case that m ∈ AP0(t, k) if and only if 2m ∈ AP0(t, k) (see
Remark 2.1). As a consequence, the only interesting elements of AP0(t, k) are those
that are odd. Thus, Defant [8] makes the following definition for j = 0 (which we
have written in terms of arbitrary j ∈ Z

≥0):

Definition 1.3. Let Fj(k) denote the set of odd positive integers m such that the
j-fix of t of length km is a k-anti-power. Let Γj(k) = sup((2Z+ − 1) \ Fj(k)).

For sufficiently large k, Γj(k) is a well-defined odd positive integer (see Remark
4.6). However, if j 6= 0, it is not necessarily the case that m ∈ APj(t, k) if and only
if 2m ∈ APj(t, k). For example, 4 ∈ AP2(t, 3), whereas 2 6∈ AP2(t, 3). As such, in
Section 4, we will discuss our motivation for defining Γj(t, k) in this way.

Remark 1.4. It is immediate from Definition 1.3 that Fj(1) ⊇ Fj(2) ⊇ Fj(3) ⊇ · · ·
for any j ∈ Z

≥0. It follows that γj(1) ≤ γj(2) ≤ γj(3) ≤ · · · and that Γj(k) is
nondecreasing when it is finite.

As a means to understanding γj(k) and Γj(k), it will often be useful to consider
the following related function:
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Definition 1.5. For a positive integer m, let Kj(m) denote the smallest positive
integer k such that the j-fix of t of length km is not a k-anti-power.

A simple application of the Pigeonhole Principle gives that Kj(m) ≤ 2m + 1.
However, Defant [8] and Narayanan [12] prove significantly better bounds on K0(m),
showing it grows linearly in m. Using these bounds, Defant [8] is ultimately able to
show the following:

Theorem 1.6 ( [8]).

•
1

4
∗ ≤ lim inf

k→∞

γ0(k)

k
≤

9

10

•
1

2
† ≤ lim sup

k→∞

γ0(k)

k
≤

3

2

• lim inf
k→∞

Γ0(k)

k
=

3

2

• lim sup
k→∞

Γ0(k)

k
= 3.

Narayanan [12] improves the above asymptotic bounds in the following way:

Theorem 1.7 ( [12]).

•
3

4
≤ lim inf

k→∞

γ0(k)

k
≤

9

10

• lim sup
k→∞

γ0(k)

k
=

3

2
.

The goal of this paper is to demonstrate similarly good bounds on the asymptotic
growth of γj(k) and Γj(k) for general j. To do so, we will roughly follow the outline
of Defant’s paper [8], generalizing his bounds for K0(m) to bounds for Kj(m); this
will in turn allow us to prove that γj(k) and Γj(k) grow linearly in k. Specifically,
we aim to prove the following:

•
1

10
≤ lim inf

k→∞

γj(k)

k
≤

9

10

•
1

5
≤ lim sup

k→∞

γj(k)

k
≤

3

2

• lim inf
k→∞

Γj(k)

k
=

3

2

• lim sup
k→∞

Γj(k)

k
= 3.

∗Erroneously stated in [8] as 1/2 (as will later be explained)
†Erroneously stated in [8] as 1 (as will later be explained)
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Remark 1.8. Note that we follow the methods of Defant [8] rather than those of
Narayanan [12], which seem more difficult to generalize to arbitrary j ∈ Z

≥0.

In Section 2, we cover preliminary results relating to the Thue-Morse word. In
Section 3 (resp. Section 4), we prove the aforementioned asymptotic bounds on
γj(k)/k (resp. Γj(k)/k).

2. Properties of the Thue-Morse Word

In this section, we will discuss some properties of the Thue-Morse word t =
t1t2t3 · · · that will be of use throughout the remainder of the paper. It is well
known that the i-th letter ti of the Thue-Morse word has the same parity as the
number of 1’s in the binary expansion of i− 1. In his 1912 paper [14], Thue proved
that t is overlap-free, meaning that if x and y are finite words (with x nonempty),
then t does not contain xyxyx as a subword. Taking y to be empty shows that t

does not contain any 3-powers as subwords.
Let W1 and W2 be sets of words. We say a function f : W1 → W2 is a morphism

if f(xy) = f(x)f(y) for all words x, y ∈ W1. We will write A
≤ω to refer to the set

of all words over an alphabet A. Using this notation, let µ : {0, 1}≤ω → {01, 10}≤ω

be the morphism uniquely defined by µ(0) = 01 and µ(1) = 10. Similarly, let
σ : {01, 10}≤ω → {0, 1}≤ω be the morphism uniquely defined by σ(01) = 0 and
σ(10) = 1. The Thue-Morse word t and its Boolean complement t are the unique
one-sided infinite words over the alphabet {0, 1} that are fixed by µ. Similarly, t and
t, as viewed over the alphabet {01, 10}, are the unique one-sided infinite words fixed
by σ. The observation that µ(t) = t allows us to view t as a word over the alphabet
{01, 10}. More generally, if we recall the definitions of An and Bn from Definition
1.1 and note the equalities An = µn(0) and Bn = µn(1), we can view t as a word
over the alphabet {An, Bn}.

Remark 2.1. Using that µ(t) = t and σ(t) = t, it is straightforward to see that
m ∈ AP0(t, k) if and only if 2m ∈ AP0(t, k).

We will follow Defant [8] in using the notation 〈α, β〉 = tαtα+1 · · · tβ for any
positive integers α, β with α ≤ β. We are now in a position to establish some
preliminary results relating to t.

Fact 2.2 ( [8]). For any positive integers n and r, 〈2nr + 1, 2n(r + 1)〉 = µn(tr+1).

Lemma 2.3. For m ∈ Z
+, t2m+1 6= t2m+2.

Proof. If tm+1 = 1, then µ(tm+1) = t2m+1t2m+2 = 10. Similarly, if tm+1 = 0, then
µ(tm+1) = t2m+1t2m+2 = 01. In either case, t2m+1 6= t2m+2. �

Lemma 2.4. Let L, k ∈ Z
+. Then t2Lk+1t2Lk+2 = t2L+1k+1t2L+1k+2.
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Proof. We proceed by induction on L. Fix some k ∈ Z
+ and consider the case where

L = 1. We seek to show that t2k+1t2k+2 = t4k+1t4k+2. Suppose that tk+1 = 1; the
case in which tk+1 = 0 can be done similarly. Note that µ(tk+1) = t2k+1t2k+2 = 10.
Similarly, µ(t2k+1) = t4k+1t4k+2 = 10. So we have that t2k+1t2k+2 = 10 = t4k+1t4k+2,
as desired.

Now, suppose that t2L−1k+1t2L−1k+2 = t2Lk+1t2Lk+2 for some arbitrary L ∈ Z
+.

Then µ(t2L−1k+1) = t2Lk+1t2Lk+2 = µ(t2Lk+1) = t2L+1k+1t2L+1k+2. Therefore, t2Lk+1t2Lk+2 =
t2L+1k+1t2L+1k+2. The lemma follows by induction. �

3. Asymptotics for γj(k)

In this section, we prove that
1

10
≤ lim inf

k→∞

γj(k)

k
≤

9

10
and

1

5
≤ lim sup

k→∞

γj(k)

k
≤

3

2
.

3.1. Lower Bounds for γj(k)/k. In this subsection, we present a series of lemmas
that collectively establish an upper bound for Kj(m) for any integer m ≥ 2. This
will allow us to establish lower bounds for lim inf

k→∞
(γj(k)/k) and lim sup

k→∞
(γj(k)/k). We

begin with three lemmas that we will apply in the proofs of many of the lemmas
later in this subsection.

Lemma 3.1. Let m, j ∈ Z
≥0 with m ≥ 2, and let ℓ = ⌈log2(m+ j)⌉. For any

s, a ∈ Z
+, there exists a nonnegative integer r such that

〈2ℓ(s− 1) + 1, 2ℓ(s+ a)〉 = w〈rm+ j + 1, (r + 1)m+ j〉z

for some words w and z (with z nonempty).

Proof. Fix some s, a ∈ Z
+. Note that

|〈2ℓ(s− 1) + 1, 2ℓ(s+ a)〉| = 2ℓ(a+ 1) ≥ 2ℓ+1 ≥ 2(m+ j) ≥ 2m.

Since |〈rm+ j + 1, (r + 1)m+ j〉| = m for any integer r, it follows that there exists
r ∈ Z satisfying

(1) 2ℓ(s− 1) + 1 ≤ rm+ j + 1 < (r + 1)m+ j < 2ℓ(s+ a).

Moreover, we can always choose r to be nonnegative; to verify this fact, it suffices to
check that r = 0 satisfies (1) when s = 1:

2ℓ(s− 1) + 1 = 1 ≤ j + 1 < m+ j < 2ℓ+1 ≤ 2ℓ(s+ a).

When s ≥ 2, any integer r satisfying (1) is clearly positive. �

Lemma 3.2. Let j ∈ Z
≥0, m ∈ Z

+, and ℓ = ⌈log2(m+ j)⌉. If Kj(m) > 2ℓ + 1, then
tm+1tm+2 = 11 and t2m+1t2m+2 = 10.
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Proof. Suppose Kj(m) > 2ℓ + 1. Let w0 = 〈j + 1, m + j〉, w1 = 〈2ℓ−1m + j +
1, (2ℓ−1 + 1)m+ j〉, and w2 = 〈2ℓm+ j + 1, (2ℓ + 1)m+ j〉. By our assumption that
Kj(m) > 2ℓ + 1, we have that w0, w1, and w2 are distinct. Notice that for each
n ∈ {0, 1, 2}, the word wn is a j-fix of

〈nm2ℓ−1 + 1, (nm+ 2)2ℓ−1〉 = µℓ−1(tnm+1tnm+2).

It follows that t1t2, tm+1tm+2, and t2m+1t2m+2 are distinct. Note that t1t2 = 01 and
that t2m+1 6= t2m+2 (by Lemma 2.3); hence, t2m+1t2m+2 = 10. Therefore, µ(tm+1) =
t2m+1t2m+2 = 10, which implies that tm+1 = 1. Consequently, tm+1tm+2 = 11. �

Lemma 3.3. Let j,m ∈ Z
≥0 with m ≥ 2, and let ℓ = ⌈log2(m+ j)⌉. Suppose there

exists s ∈ Z
+ such that tsts+1 = tm+stm+s+1. Then

Kj(m) < 2ℓ +
2ℓ(s+ 1)− j

m
.

Proof. Observe that

〈2ℓ(s−1)+1, 2ℓ(s+1)〉 = µℓ(tsts+1) = µℓ(tm+stm+s+1) = 〈2ℓ(m+s−1)+1, 2ℓ(m+s+1)〉.

Applying Lemma 3.1 with a = 1 gives that there exists r ∈ Z
≥0 such that

(2) 〈2ℓ(s− 1) + 1, 2ℓ(s+ 1)〉 = w〈rm+ j + 1, (r + 1)m+ j〉z

for some words w and z (with z nonempty). Adding 2ℓm to each index in (2) shows
that there exist words w′ and z′ (with z′ nonempty) for which

(3) 〈2ℓ(m+ s− 1) + 1, 2ℓ(m+ s+ 1)〉 = w′〈(2ℓ + r)m+ j + 1, (2ℓ + r + 1)m+ j〉z′.

Notice that |w′| = rm+ j − 2ℓ(s− 1) = |w|. Equations (2) and (3) therefore imply

〈rm+ j + 1, (r + 1)m+ j〉 = 〈(2ℓ + r)m+ j + 1, (2ℓ + r + 1)m+ j〉.

Using (2) to see that r + 1 <
2ℓ(s+ 1)− j

m
, we therefore have that

Kj(m) ≤ 2ℓ + r + 1 < 2ℓ +
2ℓ(s+ 1)− j

m
,

as desired. �

Now that we have established the preceding preliminary results, we are ready to
derive upper bounds for Kj(m) for all integers m ≥ 2. We consider the cases m ≡ 0
(mod 2), m ≡ 1 (mod 8), m ≡ 29 (mod 32), and remaining values of m. We then
combine the bounds derived in each of these cases into a uniform upper bound on
Kj(m). We first consider the case in which m ≡ 0 (mod 2).
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Lemma 3.4. Let m = 2Lk, where L, k ∈ Z
+. Let j ∈ Z

≥0, and let ℓ = ⌈log2(m+ j)⌉.
Then

Kj(m) < 2ℓ+1 +
2ℓ+1 − j

m
.

Proof. By Lemma 2.4, we have that t2Lk+1t2Lk+2 = t2L+1k+1t2L+1k+2. It follows that

〈2ℓm+ 1, 2ℓ(m+ 2)〉 = µℓ(tm+1tm+2) = µℓ(t2m+1t2m+2) = 〈2ℓ+1m+ 1, 2ℓ+1(m+ 1)〉.

Applying Lemma 3.1 with s = 1 and a = 1 shows that there exists r ∈ Z
≥0 such that

(4) 〈1, 2ℓ+1〉 = w〈rm+ j + 1, (r + 1)m+ j〉z

for some words w and z (with z nonempty). Adding 2ℓm to each index in (4) gives
that

(5) 〈2ℓm+ 1, 2ℓ(m+ 2)〉 = w′〈(2ℓ + r)m+ j + 1, (2ℓ + r + 1)m+ j〉z′

for some words w′ and z′ (with z′ nonempty). Similarly, adding 2ℓ+1m to each index
in (4) gives that

(6) 〈2ℓ+1m+ 1, 2ℓ+1(m+ 1)〉 = w′′〈(2ℓ+1 + r)m+ j, (2ℓ+1 + r + 1)m+ j〉z′′

for some words w′′ and z′′ (with z′′ nonempty). Observe that |w′′| = rm+ j = |w′|.
Equations (5) and (6) therefore give that

〈(2ℓ + r)m+ j + 1, (2ℓ + r + 1)m+ j〉 = 〈(2ℓ+1 + r)m+ j + 1, (2ℓ+1 + r + 1)m+ j〉.

Using (4) to note that r + 1 <
2ℓ+1 − j

m
, we get

Kj(m) ≤ 2ℓ+1 + r + 1 < 2ℓ+1 +
2ℓ+1 − j

m
,

as desired. �

The following two lemmas establish upper bounds for Kj(m) when m ≡ 1 (mod 8).
Setting j = 0 in Lemma 3.5 implies Defant’s result [8, Lemma 15], while setting j = 0
in Lemma 3.7 gives a bound for K0(m) that is worse than the one given in [8, Lemma
16] by a factor of two.

Lemma 3.5. Let j ∈ Z
≥0, and suppose m = 2Lh + 1, where L and h are integers

with L ≥ 3 and h odd. Let ℓ = ⌈log2(m+ j)⌉. We have

Kj(m) < 2ℓ +
2ℓ(2L+1 + 4)− j

m
.

Proof. Suppose instead that Kj(m) ≥ 2ℓ +
2ℓ(2L+1 + 4)− j

m
. We will obtain a

contradiction to Lemma 3.3 by finding a positive integer s ≤ 2L+1 + 3 satisfying
tsts+1 = tm+stm+s+1. Note that m has a binary expansion of the form x01r0L−11,
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where x is a (possibly empty) binary string. Since m ≥ 23 · 1 + 1 = 9, we have that
r ≥ 1. Let N be the number of 1’s in x. The binary expansion of m + 2L + 2 can
be expressed as x10r+L−211, which has N + 3 1’s. Similarly, we obtain the following
table:

i Binary Expansion of i Number of 1’s in Binary Expansion of i
m+ 2L + 2 x10r+L−211 N + 3
m+ 2L + 3 x10r+L−3100 N + 2
m+ 2L+1 + 2 x10r−110L−211 N + 4
m+ 2L+1 + 3 x10r−110L−3100 N + 3

Recall that the parity of ti is the same as the parity of the number of 1’s in the
binary expansion of i − 1. It follows that tm+2L+3tm+2L+4 = 01 if N is odd and
tm+2L+1+3tm+2L+1+4 = 01 if N is even. Observe that t2L+3t2L+4 = t2L+1+3t2L+1+4 =
01. Therefore, setting s = 2L + 3 yields a contradiction to Lemma 3.3 if N is odd,
and setting s = 2L+1 + 3 yields the desired contradiction if N is even. �

Remark 3.6. The proof of Lemma 3.5 closely follows that of [8, Lemma 15]. Note,
however, that in Defant’s proof of [8, Lemma 15], he mistakenly claims that t2L+3t2L+4 =
t2L+1+3t2L+1+4 = 10, rather than t2L+3t2L+4 = t2L+1+3t2L+1+4 = 01. Setting j = 0 in
the above proof yields a correct proof of [8, Lemma 15].

Lemma 3.7. Let j ∈ Z
≥0. Suppose m = 2Lh + 1, where L and h are integers with

L ≥ 3 and h odd. Let ℓ = ⌈log2(m+ j)⌉. If n is an integer such that 2 ≤ n ≤ 2L−1,
tm−n = tm−n+1, and m+ j ≤

(

1− 1
2n+2

)

2ℓ, then

Kj(m) ≤ 2ℓ+1 −
2ℓ+1(n− 1) + j

m
.

Proof. For anym satisfying the hypotheses of the lemma, we have tm−2ntm−2n+1tm−2n+2 =
t2m−2nt2m−2n+1t2m−2n+2 [8, Lemma 16]. Consequently,

〈(m− 2n− 1)2ℓ + 1, (m− 2n+ 2)2ℓ〉 = µℓ(tm−2ntm−2n+1tm−2n+2)

= µℓ(t2m−2nt2m−2n+1t2m−2n+2) = 〈(2m− 2n− 1)2ℓ + 1, (2m− 2n+ 2)2ℓ〉.

We want to show that there is an integer r ≤ 2ℓ − 1 such that

(7) (m− 2n− 1)2ℓ ≤ (2ℓ − r − 1)m+ j < (2ℓ − r)m+ j < (m− 2n+ 2)2ℓ.

To this end, note that

(m− 2n+ 2)2ℓ − (m− 2n− 1)2ℓ = 3 · 2ℓ ≥ 3(m+ j) ≥ 3m

and that

((2ℓ − r)m+ j)− ((2ℓ − r − 1)m+ j) = m.
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It follows that there exists r ∈ Z satisfying (7). We now verify that r can always be
chosen such that r ≤ 2ℓ − 1. Our choice of r is forced to be largest when m− 2n is
smallest. Observe that

m− 2n− 1 = 2Lh− 2n ≥ 2Lh− 2L = 2L(h− 1) ≥ 0.

Indeed, (7) is satisfied by r = 2ℓ − 1 when m− 2n− 1 = 0:

0 = (m−2n−1)2ℓ ≤ j = (2ℓ−r−1)m+j < m+j = (2ℓ−r)m+j < 3·2ℓ = (m−2n+2)2ℓ.

Therefore, for some integer r ≤ 2ℓ− 1, there exist words w and z (with z nonempty)
such that

(8) 〈(m− 2n− 1)2ℓ+1, (m− 2n+2)2ℓ〉 = w〈(2ℓ− r− 1)m+ j+1, (2ℓ− r)m+ j〉z.

Adding 2ℓm to each index in (8) gives that there exist nonempty words w′ and z′

such that

(9) 〈(2m−2n−1)2ℓ+1, (2m−2n+2)2ℓ〉 = w′〈(2ℓ+1−r−1)m+j+1, (2ℓ+1−r)m+j〉z′.

Note that |w′| = −rm−m+ j + 2ℓ+1m+ 2ℓ = |w|. Therefore, (8) and (9) give that

〈(2ℓ − r − 1)m+ j + 1, (2ℓ − r)m+ j〉 = 〈(2ℓ+1 − r − 1)m+ j + 1, (2ℓ+1 − r)m+ j〉.

Noting from (7) that r >
2ℓ+1(n− 1) + j

m
, we therefore have

Kj(m) ≤ 2ℓ+1 − r ≤ 2ℓ+1 −
2ℓ+1(n− 1) + j

m
,

as desired. �

We now address the case in which m ≡ 29 (mod 32).

Lemma 3.8. Let m be a positive integer satisfying m ≡ 29 (mod 32). Let j ∈ Z
≥0,

and let ℓ = ⌈log2(m+ j)⌉. We have

Kj(m) < 2ℓ+1 +
20 · 2ℓ − j

m
.

Proof. Suppose m = 32n − 3. Let N be the number of 1’s in the binary expansion
of n. It is straightforward to verify that the binary expansion of m+ 17 = 32n+ 14
has N + 3 1’s. Similarly, we obtain the following table:

i Number of 1’s in Binary Expansion of i ti+1

m+ 17 N + 3 1
m+ 18 N + 4 0
m+ 19 N + 1 1
2m+ 17 N + 3 1
2m+ 18 N + 2 0
2m+ 19 N + 3 1
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Consequently, we have that tm+18tm+19tm+20 = t2m+18t2m+19t2m+20. It follows that

〈(m+ 17)2ℓ + 1, (m+ 20)2ℓ〉 = µℓ(tm+18tm+19tm+20)

= µℓ(t2m+18t2m+19t2m+20) = 〈(2m+ 17)2ℓ + 1, (2m+ 20)2ℓ〉.

Applying Lemma 3.1 with s = 18 and a = 2 gives that there exists r ∈ Z
≥0 such

that

(10) 〈2ℓ · 17 + 1, 2ℓ · 20〉 = w〈rm+ j + 1, (r + 1)m+ j〉z

for some words w and z (with z nonempty). Adding 2ℓm to each index in (10) implies
that

(11) 〈2ℓ(m+ 17) + 1, 2ℓ(m+ 20)〉 = w′〈(r + 2ℓ)m+ j + 1, (r + 2ℓ + 1)m+ j〉z′

for some words w′ and z′ (with z′ possibly empty). Similarly, adding 2ℓ+1m to each
index in equation (10) gives that there exist words w′′ and z′′ (with z′′ nonempty)
for which

(12) 〈2ℓ(2m+17)+1, 2ℓ(2m+20)〉 = w′′〈(r+2ℓ+1)m+ j+1, (r+2ℓ+1+1)m+ j〉z′′.

Observe that |w′′| = rm+ j − 17 · 2ℓ = |w′|. Therefore, (11) and (12) imply

〈(r + 2ℓ)m+ j + 1, (r + 2ℓ + 1)m+ j〉 = 〈(r + 2ℓ+1)m+ j + 1, (r + 2ℓ+1 + 1)m+ j〉.

Noting from (10) that r + 1 <
20 · 2ℓ − j

m
, we get

Kj(m) ≤ r + 2ℓ+1 + 1 < 2ℓ+1 +
20 · 2ℓ − j

m
,

as desired. �

Remark 3.9. We make note of an error in Defant’s proof of an upper bound for
K0(m) in the case m ≡ 29 (mod 32). In Defant’s proof of [8, Lemma 14], he claims
that

(13)
17
⋃

r=9

(

17

2r
,

10

r + 1

)

=

(

1

2
, 1

)

,

which implies the existence of some r ∈ {9, 10, . . . , 17} such that
17

2r
<

m

2ℓ
<

10

r + 1
,

where ℓ = ⌈log2m⌉. However, (13) is in fact false. This mistake can be highlighted
by observing that for m = 32 · 15− 3 = 477, there does not exist r ∈ {9, 10, . . . , 17}
satisfying the desired inequality. Fortunately, setting j = 0 in Lemma 3.8 gives the

bound K0(m) < 2ℓ+1 +
20 · 2ℓ

m
, which is only slightly worse than Defant’s intended

bound of K0(m) ≤ 2ℓ + 18. This worsens Defant’s lower bound for lim inf
k→∞

(γ0(k)/k)
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from 1/2 to 1/4, and his lower bound for lim sup
k→∞

(γ0(k)/k) from 1 to 1/2. However,

Narayanan [12] proves lim infk→∞(γ0(k)/k) ≥ 3/4 and lim supk→∞(γ0(k)/k) = 3/2,
so we still know Defant’s claimed lower bounds to be true.

Finally, we consider the case in which m is an odd positive integer with m 6≡
1 (mod 8) and m 6≡ 29 (mod 32). In this case, we can apply Defant’s proof of
[8, Lemma 14] almost exactly. For the reader’s convenience, we include a slightly
augmented outline of this proof as the proof of Lemma 3.10; for more details, see [8,
Lemma 14].

Lemma 3.10. Let m be an odd positive integer with m 6≡ 1 (mod 8) and m 6≡ 29
(mod 32). Let j ∈ Z

≥0, and let ℓ = ⌈log2(m+ j)⌉. We have

Kj(m) < 2ℓ +
37 · 2ℓ − j

m
.

Proof. Suppose for the sake of contradiction that Kj(m) ≥ 2ℓ +
37 · 2ℓ − j

m
. When

m ≡ 3 (mod 4) or m ≡ 5 (mod 8) (while m 6≡ 29 (mod 32)), we will obtain a
contradiction to Lemma 3.3 by exhibiting a positive integer s ≤ 36 satisfying tsts+1 =
tm+stm+s+1.

Assume first that m ≡ 3 (mod 4). In this case, µ2(t(m+5)/4) = 〈m+ 2, m+ 5〉, so
we have either 〈m+2, m+5〉 = 0110 or 〈m+2, m+5〉 = 1001. Since Kj(m) > 2ℓ+1,
we have by Lemma 3.2 that tm+2 = 1. It follows that 〈m + 2, m + 5〉 = 1001. In
particular, tm+4tm+5 = 01 = t4t5. Therefore, setting s = 4 yields a contradiction to
Lemma 3.2.

Assume next that m ≡ 5 (mod 8) while m 6≡ 29 (mod 32). Note that m has a
binary expansion of the form x01r01, where x is a (possibly empty) binary string.
Since m ≡ 5 (mod 8) and m 6≡ 29 (mod 32), we have that 1 ≤ r ≤ 2. Lemma 3.2
gives that tm+1 = 1, meaning the number of 1’s in the binary expansion of m is odd.
It follows that the parity of the number of 1’s in x is the same as the parity of r.

Suppose r = 1. Defant shows that in this case, tm+4tm+5 = 01 = t4t5, so we may
again set s = 4 to yield a contradiction to Lemma 3.2.

Suppose that r = 2 and that x ends in a 0. In this case, Defant argues that
tm+20tm+21 = 10 = t20t21, so we may set s = 20 to contradict Lemma 3.2.

Finally, suppose that r = 2 and that x ends in a 1. Let us write x = x′01r
′

, where
x′ is a (possibly empty) binary string. Defant shows we can put s = 20 if r′ is even
and s = 36 if r′ is odd to yield contradictions to Lemma 3.2. �

The following two lemmas use the preceding results to establish a single upper
bound for Kj(m) for any integer m ≥ 2.
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Lemma 3.11. Let j ∈ Z
≥0, and suppose m = 2Lh + 1, where L and h are integers

with L ≥ 3 and h odd. Let ℓ = ⌈log2(m+ j)⌉. Then

Kj(m) ≤ 2ℓ +
2ℓ+1(2ℓ + 2 + j)

2ℓ−1 − j
.

Proof. First, assume that m + j >

(

1−
1

2L − 4

)

2ℓ. Observe that 2ℓ − 2Lh =

2ℓ −m+ 1. Since L < ℓ, we have that 2L divides 2ℓ − 2Lh, which further gives that
2L divides 2ℓ −m+ 1. Since 2ℓ −m+ 1 > 0, this gives that

2L ≤ 2ℓ −m+ 1 < 2ℓ −

(

2ℓ −
2ℓ

2L − 4
− j

)

+ 1 =
2ℓ

2L − 4
+ j + 1.

This implies that 22L − 4 · 2L < 2ℓ + j(2L − 4) + 2L − 4. Rearranging and dividing
by 2L gives the first inequality of

(14) 2L < 2ℓ−L + (j + 5)− 4(j + 1)2−L < 2ℓ−L+2 + 2ℓ −m− 4(j + 1)2−L;

the second inequality is straightforward to verify. From Lemma 3.5, we have that

Kj(m) < 2ℓ +
2ℓ(2L+1 + 4)− j

m
. Incorporating (14), we get

2ℓ(2L+1 + 4)− j = 2ℓ+1 · 2L + 2 · 2ℓ+1 − j

< 2ℓ+1(2ℓ−L+2 + 2ℓ −m− 4(j + 1)2−L) + 8 · 2ℓ−1 − j

≤ (2ℓ − 1)2ℓ−L+3 + (2ℓ+1 + 8)2ℓ−1 + (2ℓ+1 − 2ℓ−L+3 − 1)j

≤ (2ℓ+1 + 3)2ℓ + (2ℓ+1 − 15)j,

where, in the last step, we have used that ℓ = ⌈log2(m+ j)⌉ ≥ L+1 and that L ≥ 3.
It follows that

Kj(m) < 2ℓ +
(2ℓ+1 + 3)2ℓ + (2ℓ+1 − 15)j

m

≤ 2ℓ +
(2ℓ+1 + 3)2ℓ + (2ℓ+1 − 15)j

2ℓ−1 − j
≤ 2ℓ +

2ℓ+1(2ℓ + 2 + j)

2ℓ−1 − j
.

Next, assume that m + j ≤

(

1−
1

2L − 4

)

2ℓ and L ≥ 4. Let n be the largest

integer such that m − n ≡ 2 (mod 4) and n ≤ 2L−1. Since n ≥ 2L−1 − 3, we have

that m + j ≤

(

1−
1

2n + 2

)

2ℓ. By the condition m − n ≡ 2 (mod 4), we have

tm−n = tm−n+1. We can therefore apply Lemma 3.7, which gives

Kj(m) ≤ 2ℓ+1 −
2ℓ+1(n− 1) + j

m
≤ 2ℓ+1 −

2ℓ+1(2L−1 − 4)

2ℓ − j
≤ 2ℓ +

2ℓ+1(2ℓ + 2 + j)

2ℓ−1 − j
.
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Finally, suppose L = 3. By Lemma 3.5,

Kj(m) < 2ℓ +
20 · 2ℓ − j

m
≤ 2ℓ +

20 · 2ℓ − j

2ℓ−1 − j
< 2ℓ +

2ℓ+1(2ℓ + 2 + j)

2ℓ−1 − j
. �

Lemma 3.12. Let j,m ∈ Z
≥0 withm ≥ 2 andm 6≡ 1 (mod 8). Let ℓ = ⌈log2(m+ j)⌉.

Then

Kj(m) ≤ 2ℓ +
2ℓ+1 ·max{2ℓ + 2 + j, 20}

2ℓ−1 − j
.

Proof. If m ≡ 0 (mod 2), we have by Lemma 3.4 that

Kj(m) < 2ℓ+1 +
2ℓ+1 − j

m
≤ 2ℓ+1 +

2ℓ+1 − j

2ℓ−1 − j
< 2ℓ +

2ℓ+1(2ℓ + 2 + j)

2ℓ−1 − j
.

If m ≡ 29 (mod 32), we have by Lemma 3.8 that

Kj(m) < 2ℓ+1 +
20 · 2ℓ − j

m
≤ 2ℓ+1 +

20 · 2ℓ − j

2ℓ−1 − j
< 2ℓ +

2ℓ+1(2ℓ + 2 + j)

2ℓ−1 − j
.

Finally, if m is an odd positive integer with m 6≡ 1 (mod 8) and m 6≡ 29 (mod 32),
we have by Lemma 3.10 that

Kj(m) < 2ℓ +
37 · 2ℓ − j

m
< 2ℓ +

37 · 2ℓ − j

2ℓ−1 − j
< 2ℓ +

20 · 2ℓ+1

2ℓ−1 − j
. �

We are now in a position to prove the lower bounds for lim inf
k→∞

(γj(k)/k) and

lim sup
k→∞

(γj(k)/k).

Theorem 3.13. For any nonnegative integer j,

lim inf
k→∞

γj(k)

k
≥

1

10
and lim sup

k→∞

γj(k)

k
≥

1

5
.

Proof. Fix j ∈ Z
≥0. For each positive integer ℓ, define gj(ℓ) = 2ℓ+

2ℓ+1 ·max{2ℓ + 2 + j, 20}

2ℓ−1 − j
.

Choose an arbitrary k ∈ Z
+ and let ℓ = ⌈log2(γj(k) + j)⌉. By definition of γj, we have

that k < Kj(γj(k)). Applying Lemmas 3.11 and 3.12 gives
γj(k)

k
>

γj(k)

gj(ℓ)
>

2ℓ−1 − j

gj(ℓ)
.

Therefore, lim inf
k→∞

γj(k)

k
≥ lim

ℓ→∞

2ℓ−1 − j

gj(ℓ)
=

1

10
.

By Lemmas 3.11 and 3.12, we have that Kj(m) < ⌊gj(ℓ)⌋+1 for all positive integers
m < 2ℓ−j. Therefore, by the definition of γj, we have that γj(⌊gj(ℓ)⌋+1) ≥ 2ℓ−j+1.
Consequently,

lim sup
k→∞

γj(ℓ)

k
≥ lim sup

ℓ→∞

γj(⌊gj(ℓ)⌋+ 1)

⌊gj(ℓ)⌋+ 1
≥ lim

ℓ→∞

2ℓ − j + 1

gj(ℓ) + 1
=

1

5
. �
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3.2. Upper Bounds for γj(k)/k. In this subsection we establish upper bounds for
lim inf
k→∞

(γj(k)/k) and lim sup
k→∞

(γj(k)/k). We start by stating a result of Defant.

Proposition 3.14 ( [8], Proposition 6). Let m ≥ 2 be an integer, and let δ(m) =
⌈log2(m/3)⌉. If y and v are words such that yvy is a factor of t and |y| = m, then
2δ(m) divides |yv|.

We proceed with a lemma and theorem whose proofs closely follow those of [8,
Lemma 19] and [8, Theorem 20], respectively.

Lemma 3.15. For each integer ℓ ≥ 3 and any nonnegative integer j, we have

Kj(3 · 2
ℓ−2 + 1) >

5 · 22ℓ−3 − j

3 · 2ℓ−2 + 1
and Kj(2

ℓ−1 + 3) >
22ℓ−2 − j

m′
.

Proof. Fix ℓ ≥ 3 and j ∈ Z
≥0. Let m = 3 · 2ℓ−2 + 1 and m′ = 2ℓ−1 + 3. By the

definitions of Kj(m) and Kj(m
′), there exist nonnegative integers r < Kj(m)− 1 and

r′ < Kj(m
′)− 1 such that

〈rm+ j + 1, (r + 1)m+ j〉 = 〈(Kj(m)− 1)m+ j + 1,Kj(m)m+ j〉

and

〈r′m′ + j + 1, (r′ + 1)m′ + j〉 = 〈(Kj(m
′)− 1)m′ + j + 1,Kj(m

′)m′ + j〉.

By Proposition 3.14, 2ℓ−1 divides (Kj(m) − 1)m − rm and 2ℓ−2 divides (Kj(m
′) −

1)m′ − r′m′. Because m and m′ are odd, we have that 2ℓ−1 divides Kj(m) − r − 1
and 2ℓ−2 divides Kj(m

′) − r′ − 1. If Kj(m) − r − 1 ≥ 2ℓ, then we have the desired

inequality Kj(m) >
5 · 22ℓ−3 − j

3 · 2ℓ−2 + 1
. We may therefore assume that Kj(m) = r+2ℓ−1+1.

Similarly, we may assume that Kj(m
′) = r′ + 2ℓ−2 + 1.

Assume for the sake of contradiction that Kj(m) ≤
5 · 22ℓ−3 − j

m
. Let u = 〈rm +

j+1, (r+1)m+ j〉 and v = 〈(Kj(m)−1)m+ j+1,Kj(m)m+ j〉. It is straightforward
to verify that

3 · 22ℓ−3 < (Kj(m)− 1)m+ j < Kj(m)m+ j ≤ 5 · 22ℓ−3.

Therefore, we have

µ2ℓ−3(01) = µ2ℓ−3(t4t5) = 〈3 · 22ℓ−3 + 1, 5 · 22ℓ−3〉 = wvz

for some words w and z. Observe that |w| = ((Kj(m)− 1)m+ j + 1) − 3 · 22ℓ−3 =
rm+ 2ℓ−1 + j. Since µ2ℓ−3(01) = µ2ℓ−3(t1t2) = 〈1, 22ℓ−3〉, we have v = 〈rm+ 2ℓ−1 +
j + 1, (r+ 1)m+ 2ℓ−1 + j〉. Now, set a = rm+ j + 1 and b = rm+ 2ℓ−1 + j + 1, and
note that a < b ≤ a+m. Recalling that t is overlap-free, this implies that u 6= v, a
contradiction.
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Assume now that Kj(m
′) ≤

22ℓ−2 − j

m′
. Let u′ = 〈r′m′ + j + 1, (r′ + 1)m′ + j〉

and v′ = 〈(Kj(m
′) − 1)m′ + j + 1,Kj(m

′)m′〉. Let q =

⌈

r′m′ + j + 1

2ℓ−2

⌉

and H =

min
{

(r′ + 1)m′, (q + 2)2ℓ−2 + j
}

. Additionally, let U = 〈r′m′ + j + 1, H + j〉 and

V = 〈(r′ + 2ℓ−2)m′ + j + 1, H + 2ℓ−2m′ + j〉. Note that the word U is the prefix of
u′ of length H − r′m′. Recalling that Kj(m

′) = r′ + 2ℓ−2 + 1, we see that V is the
prefix of v′ of length H − r′m′. Since u′ = v′, it follows that U = V .

Now, we claim that there are words w′ and z′ such that

µℓ−2(tqtq+1tq+2) = 〈(q − 1)2ℓ−2 + 1, (q + 2)2ℓ−2〉 = w′Uz′.

This can be easily verified by checking that (q − 1)2ℓ−2 ≤ r′m′ + j < H + j ≤
(q + 2)2ℓ−2. Similarly, there are words w′′ and z′′ such that

µℓ−2(tq+m′tq+m′+1tq+m′+2) = 〈(q +m′ − 1)2ℓ−2 + 1, (q +m′ + 2)2ℓ−2〉 = w′′V z′′.

Note that

0 ≤ |w′| = |w′′| = r′m′+ j− (q−1)2ℓ−2 ≤ r′m′+ j−

(

r′m′ + j + 1

2ℓ−2
− 1

)

2ℓ−2 < 2ℓ−2,

meaning w′ is a prefix of µℓ−2(tq) and w′′ is a prefix of µℓ−2(tq+m′+1). Therefore, the
suffix of µℓ−2(tq) of length 2ℓ−2 − |w′| is a prefix of U and the suffix of µℓ−2(tq+m′)
of length 2ℓ−2 − |w′′| is a prefix of V . Since |w′| = |w′′| and U = V , it follows that
tq = tq+m′.

Note also that |z′| = |z′′| = (q+2)2ℓ−2− (H + j). We will show that H +2ℓ−2m+
j + 1 − (q + m′ + 1)2ℓ−2 > 0, which will show that z′′ is a suffix of µℓ−2(tq+m′+2).
Observe that

H + 2ℓ−2m′ + j + 1− (q +m′ + 1)2ℓ−2 = H + j + 1− q2ℓ−2 − 2ℓ−2

> H + j + 1−

(

r′m′ + j + 1

2ℓ−2
+ 1

)

2ℓ−2 − 2ℓ−2

= H − r′m′ − 2ℓ−1.

If H = r′m′+m′, then H = r′m′+2ℓ−1+3 > r′m′+2ℓ−1, giving H−r′m′−2ℓ−1 > 0.
Alternatively, if H = (q + 2)2ℓ−2 − j, then we have

(q + 2)2ℓ−2 − j ≥

(

r′m′ + j + 1

2ℓ−2
+ 2

)

2ℓ−2 − j = r′m′ + 2ℓ−1 + 1 > r′m′ + 2ℓ−1,

and again H − r′m′ − 2ℓ−1 > 0. It follows that tq+2 = tq+m′+2. Similarly, tq+1 =
tq+m′+1.
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〈(q − 1)2ℓ−2 + 1, (q + 2)2ℓ−2〉

µℓ−2(tq) µℓ−2(tq+1) µℓ−2(tq+2)

w′ U z′

〈(q +m′ − 1)2ℓ−2 + 1, (q +m′ + 2)2ℓ−2〉

µℓ−2(tq+m′) µℓ−2(tq+m′+1)µ
ℓ−2(tq+m′+2)

w′′ V z′′

Figure 1. An illustration of the proof of Lemma 3.15 from [8].

Now,

r′ = Kj(m
′)− 2ℓ−2 − 1 ≤

22ℓ−2 − j

m′
− 2ℓ−2 − 1 =

22ℓ−3 − 5 · 2ℓ−2 − j − 3

m′
.

It follows that r′m′+j+1 ≤ 22ℓ−3−5·2ℓ−2−2, which gives that
r′m′ + j + 1

2ℓ−2
≤ 2ℓ−1−5.

Therefore, q+4 < 2ℓ−1. Consequently, for each s ∈ {0, 1, 2}, the binary expansion of
q +m′ + s− 1 has exactly one more 1 than the binary expansion of q + s+ 2. Thus,

tq+3tq+4tq+5 = tq+m′tq+m′+1tq+m′+2 = tqtq+1tq+2.

However, using that t is cube-free, it is easy to verify that whenever X is a word
of length 3, XX is not a factor of t. Setting X = tqtq+1tq+2 therefore yields a
contradiction. �

Theorem 3.16. For any nonnegative integer j,

lim inf
k→∞

γj(k)

k
≤

9

10
and lim sup

k→∞

γj(k)

k
≤

3

2
.

Proof. Fix j ∈ Z
≥0. For each positive integer ℓ, let fj(ℓ) =

⌊

5 · 22ℓ−3 − j

3 · 2ℓ−2 + 1

⌋

and

hj(ℓ) =

⌊

22ℓ−2 − j

2ℓ−1 + 3

⌋

. It is straightforward to verify that hj(ℓ) < fj(ℓ) ≤ hj(ℓ+1) for

all ℓ ≥ 3. By Lemma 3.15, we have that Kj(3 ·2
ℓ−2+1) > fj(ℓ). As a result, the j-fix

of t of length (3 ·2ℓ−2+1)fj(ℓ) is an fj(ℓ)-anti-power, meaning γj(fj(ℓ)) ≤ 3 ·2ℓ−2+1.
Consequently,

lim inf
k→∞

γj(k)

k
≤ lim inf

ℓ→∞

γj(fj(ℓ))

fj(ℓ)
≤ lim inf

ℓ→∞

3 · 2ℓ−2 + 1

fj(ℓ)
=

9

10
.

Fix an integer k ≥ 3. Suppose that hj(ℓ) < k ≤ fj(ℓ) for some integer ℓ ≥ 3. In
this case, the j-fix of t of length (3 · 2ℓ−2 + 1)fj(ℓ) is an fj(ℓ)-anti-power. It follows
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that γj(k) ≤ 3 · 2ℓ−2 + 1, meaning

γj(k)

k
<

3 · 2ℓ−2 + 1

hj(ℓ)
.

Alternatively, suppose that fj(ℓ) < k ≤ hj(ℓ+1) for some ℓ ≥ 3. In this case, Lemma
3.15 gives that the j-fix of t of length (2ℓ + 3)hj(ℓ + 1) is an hj(ℓ + 1)-anti-power,
meaning

γj(k)

k
<

2ℓ + 3

fj(ℓ)
.

We can now combine the above cases to see that

lim sup
k→∞

γj(k)

k
≤ lim sup

ℓ→∞

(

max

{

3 · 2ℓ−2 + 1

hj(ℓ)
,
2ℓ + 3

fj(ℓ)

})

= max

{

3

2
,
6

5

}

=
3

2
.

�

4. Asymptotics for Γj(k)

Having established asymptotic bounds showing that γj(k) grows linearly in k, we
now turn our attention to Γj(k). In this section, we prove that lim inf

k→∞
(Γj(k)/k) = 3/2

and lim sup
k→∞

(Γj(k)/k) = 3. We start by motivating our definition of Γj(k).

Recall that we have defined Γj(k) := sup((2Z+ − 1) \ Fj(k)). Also recall that
Defant’s motivation for defining Γ0(k) := sup((2Z+ − 1) \ F0(k)) is the property
that m ∈ AP0(t, k) if and only if 2m ∈ AP0(t, k), meaning that the only interesting
elements of AP0(t, k) are those that are odd. However, as previously noted, it is not
necessarily the case for nonzero j thatm ∈ APj(t, k) if and only if 2m ∈ APj(t, k). As
such, it is not initially clear that we are motivated in generalizing Defant’s definition
of Γ0(k) in the way we have. In other words, if it is possible for even elements of
APj(t, k) to be interesting, why would we consider only the odd elements? The
following proposition demonstrates a drawback of considering all even elements of
APj(t, k).

Proposition 4.1. For k ≥ 3, the set 2Z+ \ (AP0(t, k) ∩ 2Z+) is unbounded.

Proof. Since t1t2 · · · t9 = 011010011 has two occurrences of 011, we have that 3 ∈
Z
+ \AP0(t, k) for all k ≥ 3. Recall that m ∈ AP0(t, k) if and only if 2m ∈ AP0(t, k).

Therefore, 3·2L ∈ 2Z+\(AP0(t, k)∩2Z
+) for all L ∈ Z

+. The proposition follows. �

As a consequence of Proposition 4.1, if we were to include even numbers by defining
Γj(k) := sup(Z+ \ APj(t, k)), we would have that Γ0(k) = ∞ for k ≥ 3, which is
contrary to the result we are trying to generalize (namely, that Γ0(k) grows linearly
in k). As further motivation for our definition of Γj(k), we make the following
conjecture.
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Conjecture 4.2. For any fixed j, k ∈ Z
≥0 with k ≥ 3, the statement

m ∈ APj(t, k) ⇐⇒ 2m ∈ APj(t, k)

holds for all but finitely many m ∈ Z
+.

This conjecture is supported by numerical evidence. For instance, consider j ∈
{1, 2, 3}, 3 ≤ k ≤ 40, and 1 ≤ m ≤ 1000. Then for each pair (j, k), the expected
number of values of m not satisfying m ∈ APj(t, k) ⇐⇒ 2m ∈ APj(t, k) is less
than 0.5.

A proof of this conjecture would likely involve a characterization of exactly when
m ∈ APj(t, k) ⇐⇒ 2m ∈ APj(t, k), which would tell us precisely which elements of
APj(t, k) are interesting. For now, all we can say for certain is that the odd elements
of APj(t, k) are interesting, so we move forward with our definition of Γj(k). Let us
begin by proving a Corollary to [8, Proposition 6] (stated above as Proposition 3.14).

Corollary 4.3. Let m, k ∈ Z
+, where m ∈ (2Z+ − 1) \ Fj(t, k) and k ≥ 3. Let

δ(m) = ⌈log2(m/3)⌉. Then k − 1 ≥ 2δ(m).

Proof. By the hypotheses of the corollary, we have that the j-fix of t of length km
is not a k-anti-power. It follows that there exist integers n1 and n2 with 0 ≤ n1 <
n2 ≤ k − 1 such that

〈n1m+ j + 1, (n1 + 1)m+ j〉 = 〈n2m+ j + 1, (n2 + 1)m+ j〉.

Let y = 〈n1m + j + 1, (n1 + 1)m + j〉 and v = 〈(n1 + 1)m + j + 1, n2m + j〉. The
word yvy is a factor of t, and |y| = m. We can therefore apply [8, Proposition 6] to
get that 2δ(m) divides |yv| = (n2 − n1)m. Since m is odd, 2δ(m) divides n2 − n1. It
follows that k − 1 ≥ n2 − n1 ≥ 2δ(m). �

We now present a technical lemma that will be useful for constructing identical
pairs of subwords of the Thue-Morse word. These pairs of subwords will allow us to
establish upper bounds on Kj(m) for certain odd values of m. It will be useful to
keep in mind that Γj(k) ≥ m whenever k ≥ Kj(m); this fact follows from Definitions
1.3 and 1.5.

Lemma 4.4. Suppose that r,m, ℓ, h, p, q are nonnegative integers satisfying the fol-
lowing conditions:

• h < 2ℓ−2

• 2 ≤ m < 2ℓ

• rm = 2ℓ+1p+ 2ℓ−1 + h− j
• (r + 1)m ≤ 2ℓ+1p+ 5 · 2ℓ−2 − j
• (r + 2ℓ−2)m = 2ℓ+1q + 3 · 2ℓ−2 + h− j
• tp+1 6= tq+1
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Then 〈rm+ j + 1, (r+ 1)m+ j〉 = 〈(r + 2ℓ−2)m+ 1, (r + 2ℓ−2 + 1)m〉, and Kj(m) ≤
r + 2ℓ−2 + 1.

Proof. Define u = 〈rm + j + 1, (r + 1)m + j〉 and v = 〈(r + 2ℓ−2)m + j + 1, (r +
2ℓ−2 + 1)m+ j〉. Assume tp+1 = 0; a similar argument holds of tp+1 = 1. Recall the
definitions of An and Bn from Definition 1.1.

We will first show that Bℓ−2Aℓ−2Bℓ−2 = xuy for some words x and y with |x| = h.
To this end, note that

〈2ℓ+1p+1, 2ℓ+1(p+1)〉 = µℓ+1(tp+1) = µℓ+1(0) = Aℓ−2Bℓ−2Bℓ−2Aℓ−2Bℓ−2Aℓ−2Aℓ−2Bℓ−2.

Noting that |Aℓ−2| = |Bℓ−2| = 2ℓ−2, it suffices to show that

(15) 2ℓ+1p+ 2 · 2ℓ−2 + 1 ≤ rm+ j + 1 < (r + 1)m+ j ≤ 2ℓ+1p+ 5 · 2ℓ−2.

To prove the leftmost inequality of (15), we use the third condition to note that

(rm+ j)− (2ℓ+1p+ 2ℓ−1) = (2ℓ+1p+ 2ℓ−1 + h)− (2ℓ+1p+ 2ℓ−1) = h ≥ 0.

The middle inequality of (15) follows from the second condition, while the right-
most follows from the fourth. It follows that for some words x and y we have
Bℓ−2Aℓ−2Bℓ−2 = xuy.

We will now show that Bℓ−2Aℓ−2Bℓ−2 = x′vy′ for some words x′ and y′ with
|x′| = h. To this end, note that

〈2ℓ+1q+1, 2ℓ+1(q+1)〉 = µℓ+1(tq+1) = µℓ+1(1) = Bℓ−2Aℓ−2Aℓ−2Bℓ−2Aℓ−2Bℓ−2Bℓ−2Aℓ−2,

where we have used the final condition to see that tq+1 = 1. Recalling that |Aℓ−2| =
|Bℓ−2| = 2ℓ−2, it suffices to show that

(16) 2ℓ+1q + 3 · 2ℓ−2 ≤ (r + 2ℓ−2)m+ j < (r + 2ℓ−2 + 1)m+ j < 2ℓ+1q + 6 · 2ℓ−2.

The leftmost inequality of (16) follows from an application of the fifth condition:

((r+2ℓ−2)m+j)−(2ℓ+1q+3 ·2ℓ−2) = (2ℓ+1q+3 ·2ℓ−2+h)−(2ℓ+1q+3 ·2ℓ−2) = h ≥ 0.

As before, the middle inequality in (16) follows from the second condition. For the
rightmost inequality, note that

(r+2ℓ−2+1)m+j = 2ℓ+1q+3·2ℓ−2+m+h < 2ℓ+1q+3·2ℓ−2+2ℓ+2ℓ−2 < 2ℓ+1q+6·2ℓ−2,

where we have used the first, second, and fifth conditions.
By the above, we have that xuy = x′vy′, where |x| = |x′| = h and |u| = |v|.

Therefore, u = v. It follows that the j-fix of t of length (r + 2ℓ−2 + 1)m is not a
(r + 2ℓ−2 + 1)-anti-power, meaning

Kj(m) ≤ r + 2ℓ−2 + 1. �

We are now ready to prove one of the two main results of this section, the proof
of which adapts a construction from the proof of [8, Theorem 9].
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Aℓ+1 Bℓ+1

Aℓ−2Bℓ−2Bℓ−2Aℓ−2Bℓ−2Aℓ−2Aℓ−2Bℓ−2 Bℓ−2Aℓ−2Aℓ−2Bℓ−2Aℓ−2Bℓ−2Bℓ−2Aℓ−2

x u y x′ v y′

Figure 2. An illustration of the proof of Lemma 4.4 from [8].

Theorem 4.5. Fix j ∈ Z
≥0. For all integers k ≥ 3, we have Γj(k) ≤ 3k − 4.

Moreover, lim sup
k→∞

Γj(k)

k
= 3.

Proof. Choose an arbitrary integer k ≥ 3, and let m ∈ (2Z+−1)\Fj(t, k). If m ≤ 5,
then m ≤ 3k − 4 as desired. We can therefore assume that m ≥ 7. By Corollary
4.3, we have that k − 1 ≥ 2δ(m), where δ(m) = ⌈log2(m/3)⌉. As m is odd, we have
δ(m) > log2(m/3). Therefore, k − 1 ≥ 2δ(m) > m/3, meaning m ≤ 3k− 4. It follows
that Γj(k) ≤ 3k − 4, which further implies that lim sup

k→∞
(Γj(k)/k) ≤ 3.

We now show that lim sup
k→∞

(Γj(k)/k) ≥ 3. For each positive integer α, define

kα = 22α + 2α + 2. Fix an integer α ≥ ⌈log2(j)⌉ + 2, and set r = 2α + 1, m =
3 · 22α − 2α + 1, ℓ = 2α + 2, h = j + 1, p = 3 · 2α−3, and q = 3 · 22α−3 + 2α−2. It
is straightforward to verify that these values of r, m, ℓ, h, p, and q satisfy the first
five of the six conditions of Lemma 4.4. Note that the binary expansion of p has
exactly two 1’s and that the binary expansion of q has exactly three 1’s. Therefore,
tp+1 = 0 6= 1 = tq+1, showing that the sixth and final condition of Lemma 4.4 is also
satisfied. We can therefore apply Lemma 4.4 to get that Kj(m) ≤ r+2ℓ−2 + 1 = kα.
In other words, we have that the j-fix of t of length kαm is not a kα-anti-power,
meaning Γj(kα) ≥ m = 3 · 22α − 2α + 1. It follows that

Γj(kα)

kα
≥

3 · 22α − 2α + 1

22α + 2α + 2

for each α ≥ ⌈log2(j)⌉ + 2. Consequently, (kα)α≥⌈log2(j)⌉+2 is an increasing sequence
of positive integers with the property that Γj(kα)/kα → 3 as α → ∞. This shows
that lim sup

k→∞
(Γj(k)/k) ≥ 3, completing the proof.

�

Remark 4.6. The construction in the previous theorem also functions to show that
(2Z+ − 1) \ Fj(k) is nonempty for sufficiently large k. In particular, for j > 0 and
for any integer α ≥ ⌈log2(j)⌉, we have that m = 3 · 22α − 2α + 1 ∈ (2Z+ − 1) \ Fj(k)
for all k ≥ kα = 22α + 2α + 2.
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Next, we present a lemma that will aid in the proof of the final main result of the
paper. The lemma adapts constructions from [8, Lemma 10], but it only applies for
integers j > 0; [8, Lemma 10] gives the same result in the case that j = 0.

Lemma 4.7. Fix j ∈ Z
+ and let n be the number of 1’s in the binary expansion of

j. For integers α ≥ ⌈log2(j)⌉+ 2, β ≥ ⌈log2(j)⌉+ 9, and ρ ≥ ⌈log2(j)⌉+ 8, define

kα = 22α + 2α + 2 and Kβ = 22β+1 + 3 · 2β+3 + 49 and κρ = 2ρ + 2.

We have Γj(kα) ≥ 3 · 22α − 2α + 1, Γj(Kβ) ≥ 3 · 22β+1 − 2β−1 + 1, and Γj(κρ) ≥
5 · 2ρ−1 − 8χ(ρ) + 1, where

χj(ρ) =

{

2j + 1, if (n+ ρ) ≡ 0 (mod 2);
4j + 3, if (n+ ρ) ≡ 1 (mod 2).

Proof. The lower bound for Γj(kα) was established in the proof of Theorem 4.5.
To bound Γj(Kβ) from below, let r = 3 · 2β+3 + 48, m = 3 · 22β+1 − 2β−1 + 1,
ℓ = 2β + 3, h = 48 + j, p = 9 · 2β + 17, and q = 3 · 22β−2 + 143 · 2β−4 + 17.
It is straightforward to verify that these choices of r, m, ℓ, h, p and q satisfy the
first five of the six conditions of Lemma 4.4. For the sixth, note that the binary
expansion of p has exactly four 1’s; using that ρ ≥ 9, we also see that the binary
expansion of q has exactly nine 1’s. Therefore, tp+1 = 0 6= 1 = tq+1, which shows
that the sixth and final condition of Lemma 4.4 is satisfied. Applying Lemma 4.4
gives that Kj(m) ≤ r + 2ℓ−2 + 1 = Kβ, meaning the j-fix of t of length Kβm is not
a Kβ-anti-power. Hence, Γj(Kβ) ≥ m = 3 · 22β+1 − 2β−1 + 1, as desired.

We now establish the lower bound for Γj(κρ) (recall that κρ = 2ρ + 2). Fix
ρ ≥ ⌈log2(j)⌉ + 8. Define r′ = 1, m′ = 5 · 2ρ−1 − 8χj(ρ) + 1, ℓ′ = ρ + 2, h′ =
2ρ−1 − 8χj(ρ) + j +1, p′ = 0, and q′ = 5 · 2ρ−4 − χj(ρ). It is again straightforward to
verify that these choices satisfy the first five of the six conditions of Lemma 4.4. To
prove that tp′+1 6= tq′+1, we present an argument that depends on the parity of the
number of 1’s in the binary expansion of j (which we have denoted by n). Assume
that n is odd; the case in which n is even follows similarly. We consider two cases.

First, assume that ρ ≡ 0 (mod 2). In this case, χj(ρ) = 4j + 3, so the binary
expansion of χj(ρ) has n + 2 1’s. Note that

⌈log2 χj(ρ)⌉ = ⌈log2(4j + 3)⌉ ≤ 2 + ⌈log2(j + 1)⌉ ≤ 3 + ⌈log2(j)⌉ < ρ− 4.

It follows that when right-justified, all of the 1’s in the binary expansion of 5 ·2ρ−4 are
to the left of all the 1’s in the binary expansion of χj(ρ). Binary subtraction therefore
shows that there are ρ− 4− n 1’s in the binary expansion of 5 · 2ρ−4 − χj(ρ). Since
n is odd and ρ is even, we get that ρ− 4− n is odd, meaning tq′+1 = 1 6= 0 = tp′+1.

Next, assume instead that ρ ≡ 1 (mod 2), meaning χj(ρ) = 2j + 1. In this case,
the binary expansion of χj(ρ) has n + 1 1’s. As before, binary subtraction shows
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that there are ρ − 3 − n 1’s in the binary expansion of 5 · 2ρ−4 − χj(ρ). Since n is
odd and ρ is even, we have that ρ− 3− n is odd, meaning tq′+1 = 1 6= 0 = tp′+1.

We have shown that r′, m′, ℓ′, h′, p′, and q′ satisfy the conditions of Lemma
4.4. Applying the lemma gives that Kj(m) ≤ r′ + 2ℓ

′−2 + 1 = κρ. Therefore,
Γj(κρ) ≥ m = 5 · 2ρ−1 − 8χj(ρ) + 1. This completes the proof. �

Theorem 4.8. For any nonnegative integer j, we have lim inf
k→∞

Γj(k)

k
=

3

2
.

Proof. Choose an arbitrary positive integer k ≥ 3, and let m = Γj(k). As before, let
δ(m) = ⌈log2(m/3)⌉. By Corollary 4.3, we have k − 1 ≥ 2δ(m). Suppose that k is a
power of 2; let us write k = 2λ. The inequality k−1 ≥ 2δ(m) gives that δ(m) ≤ λ−1.

Therefore, m ≤ 3 · 2λ−1 =
3k

2
. It follows that

Γj(k)

k
≤

3

2
whenever k is a power of 2,

so lim inf
k→∞

(Γj(k)/k) ≤ 3/2.

We now show that lim inf
k→∞

(Γj(k)/k) ≥ 3/2. Recall the definitions of kα, Kβ, κρ,

and χj(ρ) from Lemma 4.7. Let η = 2 ⌈log2(j)⌉+21, fix k ≥ κη, and put m = Γj(k).
Since k ≥ κη, Lemma 4.7 and the fact that Γj is nondecreasing (see Remark 1.4)
together give m = Γj(k) ≥ Γj(κη) ≥ 5 · 2η−1 − 8χj(η) + 1. Put ℓ = ⌈log2(m+ j)⌉.
Let us first assume that 3 · 2ℓ−2 − 2(ℓ−2)/2 < m+ j ≤ 2ℓ. Note that

(17) ℓ ≥
⌈

log2(5 · 2
η−1 − 8χj(η) + 1)

⌉

≥
⌈

log2(2
η+1)

⌉

= η + 1 = 2 ⌈log2 j⌉+ 21.

In particular, we have that ℓ− 1 ≥ ⌈log2 j⌉+ 8. We can therefore apply Lemma 4.7
to get that Γj(κℓ−1) ≥ 5 · 2ℓ−2 − 8χj(ℓ− 1) + 1. Observe that

5 · 2ℓ−2 − 8χj(ℓ− 1) + 1 ≥ (m+ j) + 2ℓ−2 − 8(4j + 3) + 1

≥ (m+ j) +
1

4

(

5 · 2η−1 − 8χj(η) + 1 + j
)

− 32j − 23

≥ (m+ j) +
1

4

(

5 · 22⌈log2 j⌉+21 − 8(4j + 3) + j + 1
)

− 32j − 23

> m.

It follows that Γj(κℓ−1) > m. Because Γj is nondecreasing, κℓ−1 > k. Therefore,

(18)
Γj(k)

k
>

3 · 2ℓ−2 − 2(ℓ−2)/2

κℓ−1
=

3 · 2ℓ−2 − 2(ℓ−2)/2

2ℓ−1 + 2

in the case where 3 · 2ℓ−2 − 2(ℓ−2)/2 < m+ j ≤ 2ℓ.
Assume next that 2ℓ ≤ m+ j ≤ 3 · 2ℓ−2 − 2(ℓ−2)/2 and ℓ is even. By (17), we have

ℓ− 2 > 2 ⌈log2 j⌉ + 18, so

(ℓ− 2)/2 > ⌈log2 j⌉+ 9 > ⌈log2 j⌉ + 2.



ANTI-POWER j-FIXES OF THE THUE-MORSE WORD 23

We can therefore apply Lemma 4.7 to get that Γj(k(ℓ−2)/2) ≥ 3·2ℓ−2−2(ℓ−2)/2+1 > m.
Because Γj is nondecreasing, k < k(ℓ−2)/2. Thus,

(19)
Γj(k)

k
>

2ℓ−1

k(ℓ−2)/2

=
2ℓ−1

2ℓ−2 + 2(ℓ−2)/2 + 2

in this case.
Finally, assume that 2ℓ−2 ≤ m + j ≤ 3 · 2ℓ−2 − 2(ℓ−2)/2 and ℓ is odd. By (17), we

have ℓ− 3 ≥ 2 ⌈log2 j⌉+ 18, so

(ℓ− 3)/2 ≥ ⌈log2 j⌉+ 9.

Lemma 4.7 therefore gives that Γj(K(ℓ−3)/2) ≥ 3 · 2ℓ−2 − 2(ℓ−5)/2 + 1 > m. Since Γj

is nondecreasing, we have k < K(ℓ−3)/2. Consequently,

(20)
Γj(k)

k
>

2ℓ−1

K(ℓ−3)/2

=
2ℓ−1

2ℓ−2 + 3 · 2(ℓ+3)/2 + 49

in this case.
By (18), (19), and (20), we have that in all cases,

Γj(k)

k
>

3 · 2ℓ−2 − 2(ℓ−2)/2

2ℓ−1 + 2
.

This gives that Γj(k)/k is bounded below by a positive function of ℓ. It follows that

ℓ → ∞ as k → ∞. Consequently, lim inf
k→∞

Γj(k)

k
≥ lim

ℓ→∞

3 · 2ℓ−2 − 2(ℓ−2)/2

2ℓ−1 + 2
=

3

2
. �

5. Conclusion and Further Directions

In Section 4, we proved the exact asymptotic values lim inf
k→∞

(Γj(k)/k) = 3/2 and

lim sup
k→∞

(Γj(k)/k) = 3. To better motivate these results and establish a characteriza-

tion of what could be considered the “interesting” elements of APj(t, k), we would
like to have a proof of the conjecture stated in Section 4:

Conjecture 4.2. For any fixed j, k ∈ Z
≥0 with k ≥ 3, the statement

m ∈ APj(t, k) ⇐⇒ 2m ∈ APj(t, k)

holds for all but finitely many m ∈ Z
+.

We were able to prove exact asymptotic results in Section 4, while in Section 3,

we were only able to obtain the asymptotic bounds
1

10
≤ lim inf

k→∞

γj(k)

k
≤

9

10
and

1

5
≤ lim sup

k→∞

γj(k)

k
≤

3

2
. However, as of yet, we have no reason to believe that the
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asymptotic behavior of γj and Γj depend on j. As such, we extend a conjecture of
Defant [8, Conjecture 22] regarding the exact asymptotic growth of γ0:

Conjecture 5.1. For any nonnegative integer j, we have

lim inf
k→∞

γj(k)

k
=

9

10
and lim sup

k→∞

γj(k)

k
=

3

2
.

Note that Narayanan [12] has proven lim sup
k→∞

(γ0(k)/k) = 3/2.

Finally, note that it may be interesting to investigate the properties of APj(x, k)
for other infinite words x; Defant [8] suggests doing this for j = 0. In this paper,
we have utilized the recursive structure of t to prove exact asymptotic values (resp.
asymptotic bounds) for Γj(k)/k (resp. γj(k)/k) that are independent of j. It may be
particularly interesting to know whether there are recursively defined infinite words
for which the asymptotic growth of analogously defined functions depends on j.
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